Nanoscience on Surfaces / Rastersondenmikroskopie und Kieselalgentribologie

EUR 20,00
inkl. 10 % USt

  • Sofort versandfähig, ausreichende Stückzahl Sofort versandfähig, ausreichende Stückzahl
  • Gewicht 0.40 kg


Zu diesem Artikel existieren noch keine Bewertungen

Produktbeschreibung

Ille C. Gebeshuber
Nanoscience on Surfaces
Rastersondenmikroskopie und Kieselalgentribologie

156 Seiten | 25 x 21 cm | Softcover | ISBN: 978-3-85493-178-2
Erscheinungsdatum: Dezember 2010

ABVERKAUFSPREIS: EUR 20,00

DEUTSCH:

In der Nanotechnologie treffen verschiedenste Wissenschaftsgebiete aufeinander: Physik, Chemie, Materialwissenschaften, Biologie, Medizin und Tribologie. Die vorliegende Sammelhabilitation umspannt die Arbeit der Autorin im Bereich der Rastersondenmikroskopie und der Kieselalgentribologie. Die weltweit ersten rasterkraftmikroskopischen Untersuchungen von lebenden Kieselalgen in natürlicher Umgebung bilden die größten untersuchten Proben (einige Mikrometer). Basierend auf diesen Untersuchungen führt die Autorin das neue Gebiet der Kieselalgentribologie ein. Die weltweiten ersten rasterkraftmikroskopischen Messungen der Interaktion von Proteinen auf Einzelmolekülebene bilden den nächsten Schwerpunkt. Hier beträgt die Größe der untersuchten Objekte nur mehr einige zehn Nanometer. Schlussendlich wird die Interaktion einzelner langsamer Ionen mit atomar flachen Oberflächen beleuchtet (Methode: Rastersondenmikroskopie). Die entstehenden Nanodefekte haben eine Höhe von nur wenigen Nanometern.

ENGLISH:

In nanotechnology, various scientific and technological fields meet: physics, chemistry, materials science, biology, medicine and tribology. This habilitation thesis comprises the author’s work in the area of scanning probe microscopy and diatom nanotechnology. The largest samples (some micrometers) investigated in this thesis comprise the first atomic force microscopy investigations of living diatoms in ambient conditions. Based on these investigations, the author introduces the new field of diatom tribology. Subsequently, the first atomic force microscopy investigations of protein-protein interactions on the single molecule level (some tens of nanometers) are presented. Finally, scanning probe microscopy is used to visualize the interaction of single slow ions with atomically flat surfaces. Nanodefects with a height of just some nanometers are reported.

Inhaltsverzeichnis / Contents:

List of abbreviations, Preface, Introduction

1 Scanning Probe Microscopy: From living cells to the subatomic
range 10
1.1 Introduction 10
1.2 Cells in vivo as exemplified by diatoms 10
1.2.1 Introduction to diatoms 10
1.2.2 SPM of diatoms 11
1.3 Interaction of large organic molecules 15
1.4 Nanodefects on atomically flat surfaces 18
1.4.1 Ion bombardment of highly oriented pyrolytic graphite 19
1.4.2 Bombardment of insulator single crystal surfaces with multicharged ions 22
1.4.3 Nanodefects generated on Al2O3 single crystal surfaces via bombardment with
multicharged ions 23
1.4.4 Bombardment of single crystal CaF2 surfaces via with multicharged 129Xe ions
reveal a potential energy threshold for nanodefects generation 26
1.5 Conclusions and outlook 30
2 Diatom Tribology 31
References 33, List of Figures 36

Appendix A: Publications selected for review 38
A.1 Scanning Probe Microscopy: From living cells to the subatomic range 38
A.2 Probing protein-protein interactions in real time 66
A.3 Atomic force microscopy study of living diatoms in ambient conditions 71
A.4 In vivo nanoscale atomic force microscopy investigation of diatom adhesion
properties 81
A.5 AFM search for slow MCI-produced nanodefects on atomically clean
monocrystalline insulator surfaces 86
A.6 Nanoscopic surface modification by slow ion bombardment 93
A.7 Surface nanostructures induced by slow highly charged ions on CaF2 single
crystals 102
A.8 Potential energy threshold for nanohillock formation by impact of slow highly
charged ions on a CaF2(111) surface 107
A.9 Diatom bionanotribology - Biological surfaces in relative motion: their design,
friction, adhesion, lubrication and wear 113
A.10 Micromechanics in biogenic hydrated silica: hinges and interlocking devices in
diatoms 124

Appendix B: Publication list 135
Journal articles 135, Invited Book Chapters 137, Papers resulting from presentations
at international conferences 137, Papers submitted and in preparation in April 2008
139

Appendix C:
Curriculum vitae 141, Education 141, Employment 141, Research visits 141,
Current research interests 142, Team Member in Research Projects 142, Research
Project Management 142, Research Project Acquisition 143, Invited, plenary and
keynote talks at International Conferences 143, Teaching experience 144, Pupils
and Students from Universities of Applied Sciences, doing an internship 145,
Undergraduate students, doing the project work “Interactions with surfaces” (8 hours
per week, for one semester): 145, Summer students 147 IAESTE (International
Association for the Exchange of Students for Technical Experience) students 147,
Diploma students 148, Graduate Students (working for Dr. techn.) 148, PostDoc
148, Popular Science / Outreach Activities 148, Publicity 150, Education and
Training of Physics Teachers 151, Honors and Awards 151, Committee Positions
151, Editorial Board Memberships 152, Other Scientific Community services 153,
Reviewing work (peer-reviewed journals, books) 153, Acknowledgements 154

Bewertung(en)